3.262 \(\int \frac{\cos (a+b x)}{\sqrt{\csc (a+b x)}} \, dx\)

Optimal. Leaf size=17 \[ \frac{2}{3 b \csc ^{\frac{3}{2}}(a+b x)} \]

[Out]

2/(3*b*Csc[a + b*x]^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0247542, antiderivative size = 17, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {2621, 30} \[ \frac{2}{3 b \csc ^{\frac{3}{2}}(a+b x)} \]

Antiderivative was successfully verified.

[In]

Int[Cos[a + b*x]/Sqrt[Csc[a + b*x]],x]

[Out]

2/(3*b*Csc[a + b*x]^(3/2))

Rule 2621

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(f*a^n)^(-1), Subst
[Int[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Csc[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && Integer
Q[(n + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \frac{\cos (a+b x)}{\sqrt{\csc (a+b x)}} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{1}{x^{5/2}} \, dx,x,\csc (a+b x)\right )}{b}\\ &=\frac{2}{3 b \csc ^{\frac{3}{2}}(a+b x)}\\ \end{align*}

Mathematica [A]  time = 0.0244207, size = 17, normalized size = 1. \[ \frac{2}{3 b \csc ^{\frac{3}{2}}(a+b x)} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[a + b*x]/Sqrt[Csc[a + b*x]],x]

[Out]

2/(3*b*Csc[a + b*x]^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.029, size = 14, normalized size = 0.8 \begin{align*}{\frac{2}{3\,b} \left ( \csc \left ( bx+a \right ) \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(b*x+a)/csc(b*x+a)^(1/2),x)

[Out]

2/3/b/csc(b*x+a)^(3/2)

________________________________________________________________________________________

Maxima [A]  time = 0.943326, size = 18, normalized size = 1.06 \begin{align*} \frac{2 \, \sin \left (b x + a\right )^{\frac{3}{2}}}{3 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)/csc(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

2/3*sin(b*x + a)^(3/2)/b

________________________________________________________________________________________

Fricas [A]  time = 1.09656, size = 68, normalized size = 4. \begin{align*} -\frac{2 \,{\left (\cos \left (b x + a\right )^{2} - 1\right )}}{3 \, b \sqrt{\sin \left (b x + a\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)/csc(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

-2/3*(cos(b*x + a)^2 - 1)/(b*sqrt(sin(b*x + a)))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos{\left (a + b x \right )}}{\sqrt{\csc{\left (a + b x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)/csc(b*x+a)**(1/2),x)

[Out]

Integral(cos(a + b*x)/sqrt(csc(a + b*x)), x)

________________________________________________________________________________________

Giac [B]  time = 1.31045, size = 43, normalized size = 2.53 \begin{align*} \frac{2 \, \mathrm{sgn}\left (\sin \left (b x + a\right )\right )^{3} \sin \left (b x + a\right )^{\frac{3}{2}}}{3 \, b \mathrm{sgn}\left (\mathrm{sgn}\left (\sin \left (b x + a\right )\right )\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)/csc(b*x+a)^(1/2),x, algorithm="giac")

[Out]

2/3*sgn(sin(b*x + a))^3*sin(b*x + a)^(3/2)/(b*sgn(sgn(sin(b*x + a)))^2)